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Injection of a foreign gas into the laminar air boundary layer is
considered. The mixture properties are arbitrary functions of tempera-
ture T and foreign gas concentration w. Unless the properties are con-
stant, similarity transformations are valid only at the stagnation point
or for a wall at constant pressure. Solutions of the three similarity
equations are quite cumbersome because triple iterations are involved
at the wall to satisfy three conditions at the outer edge of the boundary
layer. A correlation formula of rigorous numerical solutions for gqy/qyo

ABSTRACT

Jhas been derived in Reference 14 for the constant pressure case. Here,

qw 1s the heat transfer in the presence of mass transfer, whose absence
is denoted by subscript o. This correlation formula is linear in the
mass transfer rate p v, and, therefore, fails for large values of pyvy.

A simple engineering solution method of the similarity equations
is proposed here, which gives those points of the qy/qye Vversus pyvy,
relationship for which five property parameters are nearly constant
across the boundary layer. If these five conditions are satisfied,
the differential equations in similarity variables can be uncoupled.
By use of an auxiliary graph, the momentum equation can be integrated
directly as an initial value problem. This solution is used to deter-
mine q,, by quadratures. Correlation formulas for q; are presented for
both the constant pressure and the stagnation point cases.

The five conditions on the mixture properties can be satisfied in
an approximate way for the injection of HZ0, H,, or H, into air, provided
dissipation effects are sufficiently small. Comparison to the correla-
tion formula of Reference 14 shows very good agreement if the Mach number
M, = 0, and some difference for My = 3. The results for Hy0-air mixtures




BeT” 760

cover the range of qy/qy,, values from unity to values as low as 0.5.
Only very small injection rates are compatible with the five conditions
if Hy or Hy is injected into air. The theory is worked out in this
paper for the case of constant pressure and air as the primary flowing

medium, /4,(/_7%0/2/
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LIST OF SYMBOLS

Symbol Definition
a m/sec speed of sound

B = - [£,@+1)Pr/2] (Nu/NRe)

fw=0

C = 10/ MeoPoo Chapman-Rubesin parameter

c = cpf/cpa auxiliary parameter

°p kcal/kg°K specific heat
D mZ/sec oridnary diffusion coefficient
£ non-dimensional stream function
h kg/sec mZ heat transfer coefficient

i kcal/kg enthalpy

k kcal/m °K sec thermal conductivity
m Euler number in u, = const. x©
Moo Mach number
M molecular weight
N = - X QT w/(T_- T ) Nussel t number

u ay w oo

Pr = Hcp/k Prandtl number

dy; kcal/m2 sec heat transfer at the wall

R kcal/kg °K universal gas constant

Re = PXUeof P Reynolds number

Sc = y/D Schmidt number



Symbol

Pc

Parf

o/ o,

VAT

k/k

4]

= cp/cpoo

= [cp (T) - ¢
Pa

kg/m>

kg/m sec

=u/p m2/sec

kg/m sec

LIST OF SYMBOLS (Cont'd)
Definition
absolute temperature
temperature ratio

velocity component parallel to the
wall

velocity component normal to the wall
concentration of foreign gas
coordinate parallel to the wall
coordinate normal to the wall

see equation (29)

see equation (29)

b (D ¢p (1)
density
viscosity
kinematic viscosity
stream function
similarity variable

dummy variable for 7

vi




LIST OF SYMBOLS (Cont'd)

Symbol Definition

4 dummy variable for 7

K = CP/CV ratio of specific heats
SUBSCRIPTS

a = air

f = foreign gas

w = wall

o = no mass transfer

= ]'.TLC"mpl‘ESS ible

e
|

o = outer edge of boundary layer
SUPERSCRIPT
* = value taken at reference temperature, see equation (40).
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I. INTRODUCTION

The problem of simultaneous heat and mass transfer began to attract
considerable attention about ten years ago. A two-way interaction between
these transfer rates occurs in case of ablating surfaces, and a one-
directional interaction in case of transpiration cooling. Ablation is
experienced by objects traversing an atmosphere at sufficiently high
speed; ablation also takes place under suitable conditions if a medium
flowing through a chemical reactor undergoes a reaction with a solid or
a liquid deposited in the reactor. Transpiration cooling of the surfaces
of wings, gas turbine blades, etc., has been studied extensively in the
past.

Even though the assumptions upon which boundary layer theory is
based are violated in case of normal mass transfer across a wall at rest,
experiments confirm pertinent boundary layer solutions within measuring
accuracy. Laminar boundary layer solutions are physically valid only
for sufficiently small injection rates normal to the surface because of
stability consideratiomns., Solutions of the stationary boundary layer
equations may be used to approximate nonstationary flight situations.

An exceptional case occurs when the ablation rate depends not only on

the instantaneous heat transfer rate but also on the transient conduc-
tion of heat in the interior of the wall whose surface is ablating (see
Reference 1). 1If time-dependent effects may be ignored, the double inter-
action between heat and mass transfer can be analyzed for a given flight
state by interpolating between a number of simple-interaction solutions
with prescribed mass injection.



Theoretical contributions to the heat and mass transfer problem under
discussion deal predominantly with stationary, binary, and laminar boundary
layer flow consisting of a main ("primary") stream and an injected ("foreign'")
constituent. This problem is governed by a system of four simultaneous dif-
ferential equations, (1) through (4) in Section 2, representing conservation
of matter, momentum, foreign species, and energy. Up to now, these equa-
tions have been solved rigorously only under simplifying assumptions on the
mixture properties and/or the flow parameters. Inspection of equations (1)
through (4) yields the conditions under which either the mass concentration
w(x, y) of the foreign gas is determined as a function of the temperature
distribution T(x, y) or the distributions of both w(x, y) (see Reference 3,
p. 608 and Reference 9, p. 458). Similarity solutions of equations (1)
through (4) have been published for both constant and variable mixture pro-
perties, If the Mach number, the temperature difference across the boundary
layer, and the foreign gas concentration are sufficiently small, constant
mixture properties may be assumed. This case has been treated in References
15 and 25. Similarity solutions then hold true for any Euler number m., If
the mixture properties are allowed to depend on temperature and foreign gas
concentration, similarity solutions exist only for the stagnation point
(m = 1) and for zero pressure gradient (m = 0). The casem =1 is dealt
with in References 16 and 17; the case M = 0 is treated in References 11
and 14, 1In some references, homogeneous or heterogeneous chemical reactions
of assumed order between the constituents are included in the discussion,
e.g., Chapter 19 of Reference 3. Solutions for more than two chemical con-
stituents have been derived in connection with dissociation or ionization of
the constituents in the mixture, e.g., References 21 and 23.

Even if a similarity transformation has been introduced, the system
of simultaneous nonlinear differential equations offers formidable resis-
tance to numerical solutions, provided the mixture properties are allowed
to depend on both foreign gas concentration w and temperature T as is pre-
dicted by the kinetic theory of gases, e.g., References 6 and 19. This
situation becomes evident by considering that three boundary conditions
at the outer edge of the boundary layer have to be satisfied by simultaneous
iterations for the gradients of velocity, temperature, and concentration at
the wall. The momentum equation in similarity variables becomes independent
of the differential equations for T and w if the produce of viscosity p and
density p is assumed to be constant. However, for the compressible boundary
layer flow of a single gas, similarity solutions show a significant difference
if the case of constant pp is dependent on T according to the equation of
state and Sutherland's viscosity law for air, e.g., Chapter 4 of Reference 27,

It is shown in this report for mixtures consisting of air and Hz0
vapor, He, or H, that it is possible for any given set of boundary values
Ty and T, to determine the wall concentration Wy SO that the relevant
mixture properties take approximately the same values at the wall and at
the outer edge of the boundary layer. Under suitable conditions specified




in this report, these mixture properties then must be nearly constant
across the entire boundary layer. If it may be assumed that pp = const.
in the boundary layer, the momentum equation in, similarity variables can
be solved independently of the other differential equations. The equa-
tion for the foreign gas concentration and, subsequently, the one for

the temperature distribution, can then be solved by quadratures involving
the solution of the momentum equation. Evidently, the numerical work of
this solution method is very much smaller than the work needed to inte-
grate the simultaneous system of three similarity differential equations
with split boundary conditions. This is particularly true since experi-
ence shows that numerical instabilities in these integration procedures
limit their range of applicability. Also, it is impossible to check the
accuracy of numerical integrations of the differential equations by means
as simple as the ones needed to check the quadratures involved in the
method proposed in this paper.

II, THE DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

According to page 457 of Reference 9, the stationary, two-dimensional,
and laminar boundary layer flow of a binary, compressible mixture is
described by the following system of differential equations if both pres-
sure gradient and thermal diffusion are negligible and if the mixture is
chemically inert:

ofpw) . 9(ev) _

ax + ay - 0, (1)
ou du  d du\ _

wBre 530 @
ow ow O ow\ _

mEr g0 5)- 0 e ©

2
oT O O oT du oT ow _
ocp4 =< + pCpY a—y - 'a—y- <k a—y) -u —a-}:> + oD (Cpa - Cpf) v F}’ = 0, (4)

In the equations (2), (3), and (4), the third term represents, respectively,
the diffusion of momentum, matter, and heat, The last two terms in equa-
tion (4) stand for dissipated mechanical energy and for internal energy
exchanged due to the diffusion flows of primary and injected medium,
respectively.



The following boundary conditions are specified:

u(x, 0) = 0, v(x, 0) = v;(x), w(x, 0) = wy(x), and T(x, 0) = T, ,(x)

(5)
at the wall y = 0; and
lim u = ue(x), lim W = We(x), and 1lim T = Ten(x) (6)
y - w y o y =

at the outer edge of the boundary layer. The quantities v_, wW_, Uy, W,
and T, have to be given. Since the wall is supposedly impermeable to
the primary gas, convection of this gas toward the wall is balanced by
diffusion of this gas in the opposite direction, i.e.,

J
PV (1 - W) = - PwDy a_‘;:>w . (7)

Provided suitable initial conditions have been prescribed at some upstream
station x = const., e.g., at the stagnation point x = 0, equations (1)
through (6) completely determine the functions u(x, y), v(x, y), w(x, V¥),
and T(x, y). In the following, this system is solved for the tempera-
ture gradient OT(x, 0)/Jy at the wall. Under the stationary conditions
stipulated, the heat transfer rate qy = - ky OT(x, 0)/Jy is balanced by
radiation from the surface and/or by the heat absorbed by the coolant

as it is transported across the wall.

As in Reference 11, the following nondimensional similarity variables

are introduced:
Yy
_L/"" —dy_
n=3 el 7 ) and (8)
o o8

. ¢))




The continuity equation (1) is identically satisfied by the stream
function | for the two-dimensional case at hand. Equations (8) and (9)
then determine the velocity components as follows:

Po oy _ T £' ()
w=—8l- o o (10)

Poo : (% ooYoo
VE"J%’E“?%J — [£() - nf' (], (11

where C(y) = Wu wp. Equation (11) implies

£(0) = £, = - 2 - . (11a)

The similarity transformation given by equations (8) and (9) implies
v (x) = x~+/2, The momentum equation (2) becomes

f(n) [C’l(n) £ (m] + -;z [ct(m) £' ()] = 0. (12)

Additional similarity conditions are introduced by

w=w(n) and T = T(n) (13)
so that w_ = const. and T, = const. Equations (3) and (4) then take
the form
dw(n) , d 1 dw(n) \ _ 4
f(n) dn + an <§C<ﬂ) dn 0 and (14)
/ ¢ (D z
4 (1) 4 d (T(n) [g_<_l m}
P () £(n) dn\Too>+ o [ o dn( )}» & (et &
) @af(n) dw(n) d <?Sﬂ%> =0, ' (15)
Sc(n) dn dn \ T,



where the relation ai = cp,, (Ky - 1) T, has been used. The coefficients
¢c» and @ in the system of differential equations (12), (14),

and (fS) depend on w(n) and T(n). The coefficient P,¢ is a function of

T(n) only. The boundary conditions (5) and (6) take the following form:

£'(0) =0, £(0) = £y, w() =wy, T(0) =T, (16)
lim £'(n) = 2, lim w(y) = w,, lim T(n) = T, and a7)
n — © N - ® N o ®

- w' (0)
O 5® 0 -vor (18

Equations (12) and (14) through (17) define a split boundary-value
problem for a system of three nonlinear ordinary differential equations
of the seventh order. Solutions with regard to Pr = Sc = 1 and

M, = gaf = O are particularly simple, but constitute rather poor
approximations to solutions with variable properties. Under the
assumptions of M, = 0 and constant properties, the authors have solved
equations (12) and (14) through (18) in a wide range of Pr, Sc, ¢, and
f;. A correlation formula for the results is presented in Appendix B.
A numerical solution of this problem for any given set of coefficients
¢M(T W), (T W), @ (T, w), ¢, (T, w), and @af(T W) requires an
iterative technlque which employs the four given initial conditions
(16) and three iteratively corrected initial assumptions of f£'"(0),

w' (0), and T'(0) to satisfy the conditions (17). The boundary values
at the wall have to be consistent with equation (18). It is desirable
to uncouple these differential equations in order to reduce the amount
of numerical work involved in the solution procedure,.

III, SOLUTIONS OF THE DIFFERENTIAL EQUATIONS

_ The differential equations (12), (14), and (15) can be uncoupled
if the following relations hold true:

1

00 0]

o () k()

.M, wlD = L (20)
c ()

o) = —B'—C =1, (21)
P

[oe)




Sc(q) _ H(T]) Poo Dw
Scw  p(n) D(W) pg

=1, and (22)

2. () (n) - Cp. ()
Fagt Gy ”’ _ pe WV _ 23)

Conditions (20) and (21) imply Pr(y) =

Yoo

Figure 10 presents the relation between f"(0) and £(0) which follows
from numerical solutions of equation (12) under the assumption of C(n) =1.
If f, is prescribed, the three initial conditions are known and thus equa-
tion (12) can be integrated as an initial value problem. Equations (12)
and (19) yield the relation

i
f f(n) dy3 = - 1In %S(%% . (24)

o]

Equations (14), (22), and (24) give for Sc = const.

fn Sc .
W(T]) = W(O) = w' (O) f |:f" (O)J dT] (25)

and

W = W

w' (0) = ¥ ) (26)
h/‘ [fn '
Lf" (0) T]

The parameter w' (0) can be eliminated between equations (18) and (26)
so that




r Sc
f”
fw Sc JF Eﬁ%%% dn
Yu T Ve o -
= , (27)
1 - W, o ~Se
fll
£, Sc f _f'J'(%)lJ dn - 1
o

where the right-hand side is a function of f(0) = f, only. Figure 11
presents the relation between w, and f which follows for w, = 0 from
equation (27).

Equation (15) can be written to give

koo -1 5 2
tl'(T]) + t! (n) [Pr f(’q) - g CP f w' (n):l + Pr A Mogo [d cfhggl} _ O,
(28)

where t(n) = T(n)/T, and Pr, Sc, and Paf are constants. The short
notations

Voo - W ko - 1
= Pr ® v = ® = " Pr
Q1 = 3¢ @af _ o and Qo = Pr M [£'(0)]
fll( 2 dn
£'"(0) (29) -

are employed, which are defined since f"(0) = 0. Integration of equa-
tion (28) gives

{t' ©) - a Ofn [mg)} [exp< oy f ( el > dc>] dé}-

(30)




In view of the boundary condition lim t(y) = 1, a quadrature of equa-
tion (30) yields n —

t' (0) = T—Tigl - (= T(O) R f {< 7(0) 3 [exp <°‘1 f <"<0>>Sc df’)]} '

@) [o (o f ER)" @) a]a
[ f \5:«» exp [“l f G‘%)S dg} ‘”‘}

(31)

Equatlon (31) shows that the contribution of d1$$1pat10n to heat
transfer is governed by the parameter (k - 1) M T/ (T, - T(0)). The
function £"(n)/f"(0) in the right-hand side of equatlon (31) is obtained
by integrating equation (12). Equation (31) includes the case of zero
mass transfer (fy; = w,; = w, = 0), @y = 0. Because of the boundary
condition (19), equation (12) gives in this case for constant properties

£''(0) = 1.328. (32)

For £, = M_ = 0, both a; and 0, equal zero. Equation (31) then gives

[2e}
the well known expression

2

i 1
Lol ™7 = 2 fw (e oy 1P dn

(33)

See Chapter XIV of Reference 24.



10

In two special cases, the repeated quadratures in equation (31)
can be reduced to one single quadrature in the expression for ;. 1If
Pr = Sc =1

b

- Gz Too
<4_Q__Tm> Rl

9 SOZ /?—{ / Voo T - Tw } f"(O) Qo Ty
L e b exp (_2Q1_ -1 e
n=0 L E7(0)

1l

T - Te

Tw - T, y
v 2 1) / X , hod - & . (35)
d y Moo L u,L

L -0 exp [@af(ww - WW)J -1

1l

n_

The heat transfer rate for any values of Pr, Sc, and M, can be expressed
as follows by use of equation (8):

T(0 dT(0
q, = k(0) __S_l._ﬂé__ L u(O) / “éﬁl . (36)

The numerical values of p(0) and k(0) may be taken from Figures 2 and 3,
respectively, if the injection of H0 vapor, He, or Hy into air is con-
sidered.

IV, DISCUSSION OF THE VALIDITY OF THE ASSUMPTIONS
(19) - (23) ON THE MIXTURE PROPERTIES

Mixture Properties

The simultaneous system of differential equations (12), (14), and
(15) can be uncoupled if the binary mixture flow represented by these
equations satisfies conditions (19) through (23) within a reasonable
margin of error for a triple of boundary values T,, Ty, and wy. Clearly,
these conditions can be satisfied rigorously by assuming constant
mixture properties. Condition (23) cdn always be met in an approximate
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way because the specific heat c_  of any gas increases together with
temperature, e.g., Figure 4, If T, > T, and w, < w,, the conditions (19)
through (22) can be satisfied only if each one of the mixture parameters
o, w/k, ¢p, and Sc is influenced in the same direction by changes of
either temperature T or concentration w, Results of pertinent methods
listed in Appendix A show that this situation prevails if H-0 vapor, He,
or H, is injected into air (see Figures 5 through 9). This condition of
the same influences exerted by T and w fails to be satisfied for several
investigated foreign gases with molecular weights exceeding the one of
air.

As a first approximation, conditions (19) through (23) are relaxed
and satisfied by equating values at the wall and at the outer edge of
the boundary layer. By employing the T- and w-dependencies of the
mixture properties presented in Figures 1 through 5, these relaxed
conditions have been satisifed approximately for given temperatures T,
and T, listed in Table I by calculating suitable values of wy,. Equa-
tions (25), (26), (30), and (31) have been evaluated for T(n) and w(®)
with regard to case 3 listed in Table I (see Figures 12 and 13). The
functions T(n) for Mw = 0 and w(n) presented in Figures 12 and 13,
respectively, have been used to evaluate conditions (19) through (23)
in the range 0 = 7 < w, The results of this calculation appear in
Figure 14. At least in this one special case, the margin of error in
satisfying conditions (19) through (22) is smaller inside the boundary
layer than at the wall. It may be conjectured for M, = 0 that it is
sufficient to satisfy the relaxed conditions (19) through (23) by employ-
ing only given boundary values at the wall and at the ocuter edge of the
boundary layer, instead of the unknown functions T(n) and w(n). A glance
at Figure 13 shows that the relaxed form of conditions (19) through (23)
is not applicable unless the difference between the temperature profiles
for a given Mach number M_ and for M_ = O is sufficiently small. This
consideration is verified by the final results presented in Figure 15,

V. RELATIONS FROM THE REFERENCE ENTHALPY METHOD USED FOR COMPARISON

The reference enthalpy method derived by Eckert in Reference 7
gives the expression

qwo = hi (ir - i) (37)

w

for the heat transfer at an impermeable solid wall for compressible air
boundary layer flow with constant pressure. The recovery enthalpy can
be expressed as follows

r,

i = i LM -
i=ie+ 5 Mo cp ko - 1) Teo. (38)
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For laminar air flow, the recovery factor can be approximated by
r, =~Pr . (39)

The temperature~dependent gas properties are introduced at a reference
enthalpy defines as

feo= i, + 0.5 (L - 1)+ 0.22 (1 - 1); (40)

i%* gives the reference temperature T* by use of enthalpy tables for air.
For two-dimensional laminar flow along a surface with constant properties,
pressure, and temperature, the local heat transfer coefficient is obtained
from the relation

h = ou 0.332

_0.332 41
1 *© Rel/2 Pr2/8 ( )

It has been shown in Reference 7 that equation (41) is a correlation
formula for heat transfer in high-speed flow with variable properties if
p, Re, and Pr are evaluated at the reference temperature T%, i.e.,

Re(x) = p*xu /p* and Pr = H*Cp*/k*- Equations (36) through (41) give
for weo = O

I — . . 2/3
k(T , W) [p(Ty) n(Tw) {u(T“) cR(T“)J 47 (0)
W B W ot pah - KD il . 42)
qWO - }_L(T*) c (T“f':) Moeo
0.664 Liw + o P = cp (kg = 1) T - iw}

For constant pressure, it has been shown in Reference 14 that
exact results for heat transfer in the presence of mass transfer cooling
with a foreign gas (e.g., References 2, 8, and 26) can be approximated
by the following expression:

3

Eﬂ_ =1 ~1.82 / fi Py Yw Po o J& . (43)
qwo . M f poo uoo }.Loo C w 3
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c* is given by

% T* T*
c = . 44
. (44)

Equation (43) is valid over a wide range of values My, Ty, Ty, and Oyvy.
Figures 20 and 21 in Reference 14 indicate for the injection of H, and
He, respectively, that evaluations of equation (43) deviate by less

than approximately 0.05 from rigorous results derived by other investi-
gators. These rigorous results and pertinent experimental data show,
however, that q./q,, ceases to be a linear function of the mass transfer
rate pyVy as q./q,, —» 0. For this reason, it is questionable whether or
not equation (43) is valid for large mass transfer rates pyvy.

JI. RESULTS OF THE DERIVED METHOD

Table 1 presents triples of numbers T, Wy, and T, for which the
relaxed form of conditions (19) through (23) has been satisfied within
the margin of error also listed in this table, The slopes of both pu
and p/k as functions of w in Figures 6 and 7, respectively, show why
the cases appearing in Table 1 cover a wide wy-range for Ho0-air mixtures
and only small values of wy; for He-air and Hs-air mixtures. The width
of the bands presenting Sc and ¢, as functions of w for T = const,. in
Figures 9 and 5, respectively, confirms this situation.

When the five conditions (19) through (23) have been satisfied in
the outlined approximate way, suitable average values of Pr, Sc, and
@af can be estimated. For each one of the cases listed in Table I,
Figure 11 has been used to determine fy as a function of Sc and wy,.
Figure 10 gives fa in terms of f,. The momentum equation (12) can then
be integrated as an initial value problem to give f(7n). The resulting
function f"(n)/£f'"(0) is substituted into equation (31) to obtain T'(0)
by quadratures. Equation (42) finally yields qu/qyo- For M, = 0, the
numerical evaluations involved in this method can be reduced to a few
hand calculations by employing the correlation formula (B-2) in
Appendix B,

The marked points in Figure 15 present results of equation (42),
which is a consequence of the derived method, for the H 0-air mixtures
listed in Table I. The curves in Figure 15 have been obtained from
the correlation method presented in Reference 14. Equation (43) gives
the upper line when evaluated for the molecular weight ratio of Hz0 and
air. The lower curve represents a special correlation formula shown in
Figure 22 of Reference 14 for H.0 and air, The agreement between points
referring to My, = 0 and the lines is remarkably close, particularly in



14

view of the accuracy of the correlation method of Reference 14, where
rigorous solutions for H-0 and air cover a band of certain lateral

width around the lower straight line, which is also approximated by

the upper straight line representing equation (43) within a certain
margin of error. While the agreement between the derived method and

the correlation method of Reference 14 is good for Ho0-air mixtures

in a low-speed boundary layer, the evaluations of equation (42) differ
significantly from the lower straight line for M, = 3. This is due to
the fact that the influences of T(7n) and w(n) on the pertinent property
parameters given by equations (19) through (23) do not compensate each
other in an approximate way as they do for M, = 0, since the temperature
profiles reach a maximum inside the boundary layer for M, = 3 (see
Figure 13). This trend is particularly strong when Ty and T, differ
only by a relatively small quantity, see case no. 2 in Figures 13 and
15, Points for considerably higher mass transfer rates £, could have
been calculated by specifying larger values of (T, - Ty). This is due
to the fact that the values of wy, which satisfy conditions (19) through

(23) increase together with (T - T,).

VII. REVIEW AND APPLICATIONS OF THE DERIVED METHOD

A laminar air boundary layer with injection of foreign gas is con-
sidered here. The mixture properties may depend in any prescribed way
on temperature T and foreign gas concentration w. The partial differential
equations representing conservation of matter, injected species, momentum,
and energy can be reduced to three simultaneous ordinary differential
equations by a similarity transformation which is valid both at the stag-
nation point and for a constant pressure wall. Several investigators have
solved this simultaneous system of similarity equations by rigorous numeri-
cal methods for the case of constant pressure. The solution procedures
employed are quite cumbersome because a triple iteration is necessary to
satisfy three boundary conditions at the outer edge of the boundary layer.
Available rigorous numerical solutions have been correlated in Reference 14
and represented by a linear dependency between qw/qWO and the injection
rate p,Vv / plees Whose slope coefficient is a function of Ma/Mf, Re (x),
and p*u*/ pyle. While this correlation formula treats the case of con-
stant pressure in a satisfactory manner, only individual numerical solu-
tions for special given values of T,, M,, and T,, have been published so
far for the stagnation point,

Because of this situation, a relatively simple calculation method
is proposed in this paper which gives qw/qwo for both the stagnation point
and the case of constant pressure. To show its performance and limita-
tions, this method is worked out here only for the latter case. The
method rests on the fact that the three ordinary differential equations
in similarity variables can be uncoupled if the mixture parameters pp,
w/k, Sc, and Cp, and (cpa - CPf) are constant. To render these parameters
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independent of the solutions T(7) and w(n) to be determined, these five
conditions are relaxed so that only the values at the wall are equated
to the values at the outer edge of the boundary layer. Comparison to
the correlation solution compiled in Reference 14 shows that an approxi-
mate matching of the relaxed form of the five conditions is sufficient
unless dissipation has a significant influence on the temperature pro-
file. These relaxed conditions can be satisfied in an approximate way
for the injection of H,0, He, or H, into air because changes of either
T or w have the same influences on each one of the mixture parameters
up, u/k, Sc, and cp in these three cases. This situation does not
exist, however, for several investigated foreign gases whose molecular
weight exceeds the one of air. The relaxed form of the conditions can
be satisfied in the approximate manner for He or H, if the injection
rates are very small., 1In case of H.0 injection into air, however,
values of qy/qyo as low as 0.5 can be obtained for moderate values of
(To - T,). If this temperature difference is sufficiently large, the
mass transfer rate puvy/p u_ of H,0 vapor may reach values outside the
range of applicability of the correlation formula (43) which is linear

in pwVw/ Pooleo «

If the five conditions on the mixture properties are satisfied in
the outlined approximate way, the heat transfer parameter qw/qwo is
obtained by integration of equation (12) and quadratures in the right-
hand side of equation (31). For M, = 0, the numerical evaluations can
be reduced to a few hand calculations by employing the correlation
functions presented in Appendix B for the Euler numbers m = 0 (con-
stant pressure), m = 0.5, and m = 1 (stagnation point).

In conclusion it may be pointed out that the method derived in
this paper can give simple engineering solutions of the heat and mass
transfer problem which in some applications exceed the range of validity
of the correlation formula (43) of Reference 14, Evidently, the derived
method is valid for primary gases other than air and for foreign gas
concentrations wy, # 0., The method can be generalized to include homo-
geneous or heterogeneous chemical reactions of given order. Also, the
method can be rewritten to account for a mass transfer vector component
tangential to the wall.
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APPENDIX A
THE MIXTURE PROPERTIES

1, Viscosity, Diffusion, and Thermal Conductivity Coefficient

Viscosity, ordinary diffusion, and thermal conductivity coef-
ficients were determined by use of a rigorous kinetic theory of gases
of low density initially developed for pure gases by Chapman (Refer-
ence 6) and independently by Enskog at the same time. Hirschfelder and
associates (Reference 19, pp. 514-540) extended this theory to include -~
binary mixtures. The Chapman-Enskog theory expresses the transport
coefficients in terms of the potential energy of attraction between nAdA(‘
a pair of gas molecules. Since exact potential functions aregﬁEBWﬁf
empirical relations are commonly used to describe interactiond® between
molecules. According to Reference 19, transport properties of pure
gases can be expressed in terms of molecular weight, pressure, tempera-
ture, specific heat, a characteristic diameter ¢ of the molecule, and
collision integrals which represent the deviation of the molecules from
the rigid sphere model. The collision integral is a function of a
dimensionless temperature (xT/c) and depends upon the potential model
under consideration. The parameters ¢/« (°K) and o(A) are often referred
to as "force constants'"; ¢ is a characteristic energy of attraction
between two molecules, and Kk is the Boltzmann constant.

/

In calculations of the viscosity and thermal conductivity of
Ho and He, tabulated values of the collision integrals based on the
Lennard-Jones potential model were taken from Reference 19, pp. 1126-
1127. Force constants were also obtained from Reference 19, p. 110,
The expression used for calculating thermal conductivity was developed
on a semi-empirical basis by Eucken (Reference 12) and was also derived
theoretically by Hirschfelder, Reference 19, p. 534,

Hirschfelder's general mixture equations of viscosity,
Reference 19, p. 531, mass diffusivity, Reference 19, p. 539, and
thermal conductivity, Reference 19, p. 535, were used in computations
for Hs-air and He-air mixtures. No additional input data are needed
for the use of these equations except the mole fraction of foreign gas
and the force constants of the mixture. Empirical combining laws were
used to obtain mixture force constants which account for interaction
between unlike molecules,

Oy < 0.5(Gl+ 02) and €12 TNE€; €2’, (A.]-)

(see p. 222 of Reference 19).
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Approximate, semi-empirical relations were used as a comparison
method for determining viscosity and thermal conductivity of Hs-air and
He-air mixtures. The expression used for viscosity calculations (Refer-
ence 5, p. 5) was first developed by Buddenberg and Wilke (Reference 4,
p. 1345) and simplified according to kinetic theory by Wilke (Refer-
ence 28, p. 57). In order to evaluate Wilke's equations, the tempera-
ture, concentration, molecular weights, and viscosities of the pure
gases are needed. The pure component viscosities were obtained by use
of Hirschfelder's modification of the Chapman-Enskog theory outlined
previously. A semi-empirical method for thermal conductivity derived
by Enskog and presented by Carlson and Schneider (Reference 5, p. 13)
was used in the same manner as the Wilke method for viscosity. Perti-
nent tables in Reference 10 have been used for comparison.

Computations for the viscosity and thermal conductivity of water
vapor were based on the Stockmayer potential function which is a more
realistic model for polar molecules than is the Lennard-Jones model.

The collision integrals for this case were taken from tables in Refer-
ence 22, pp. 23-33. Force constants for water molecules were obtained
from Reference 19, p. 599. Force constants for Hs0-air mixtures were
determined from equation (A-1) and were then multiplied by a correction
factor (Reference 19, p. 600) to account for the effective potential
energy of attraction between a polar and nonpolar molecule. The
viscosity and thermal conductivity for H.0-air mixtures were then
determined by the theoretical method used for Hyo-air and He-air mix-
tures. Diffusion coefficients for Hz0-air mixtures were calculated
according to an empirical equation given by Eckert (Reference 9, p. 512).
Figures 2, 3, and 8 present viscosity, thermal conductivity, and
ordinary diffusion coefficient, respectively, as functions of foreign
gas concentration w for selected temperatures T.

2., Specific Heat and Density

Experimental values of the specific heats of pure gases
(References 13, 18, and 20) were used in all cases except in calcula-
tions of the thermal conductivity of H,-air and He-air mixtures (see
Figure 4). For this case, the specific heats of the pure components
were determined by use of the energy principle of equipartition. The
actual contributions of the various energies for each degree of freedom
of the molecule to the total energy of the molecule were estimated accord-
ing to expressions given by Hirschfelder in Reference 19, pp. 116-119.

The specific heats of mixtures were determined by the following ideal
gas relationship:

cp(T, w) = cpf(T) w + N T Q- w), (A-2)
a
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Densities of pure gases and mixtures were deter-

(Reference 5, p. 3).
mined from the following ideal gas relationship:

p.M.
pl = ;Tl and p = PMP M > (A'3)
RT[1 + W(ﬁ-2 - 1]
1

(Reference 5, p. 3). The average molecular weight of air was taken
Figures 1 and 5 present the density

as 28.97 (79% N5 and 21% 02).
and the specific heat as functions of foreign gas concentration w for

selected values of temperature T.
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APPENDIX B
CORRELATION FORMULAS FOR Nu/NRe 1IN CASE OF M, = O

The similarity equations (12) and (14) through (18) have been
solved numerically on a digital computer under conditions of M, = O,
constant properties, and Euler numbers m = O, m = 0.5, and m = 1. The
Euler number is defined by u,(x) = c x®; m = 0 and 1, respectively,
represent the cases under discussion in this paper, i.e., constant
pressure and stagnation point. The numerical results for the heat
transfer parameter

WARe = - x Sy - 1 R

have been correlated as functions of the pertinent constant parameters,

Pr, Sc, ¢ = cpf/cpa, and B where B = - fuPr{m + 1)/2 [NuMARe], =g is
W

the blowing factor. The correlation functions are valid in the follow-
ing bounds:

0.0 < B s 0.1
0.3 < Pr = 5.0 (B-1)
0.25 = c £ 5.0
0.2 £ Sc¢ £ 5.0
For 0.25 = ¢ = 1.0, the blowing factor may vary in the bounds
0=B=0.,3. Form=0,

NuARe = 0.332032r0° %% | Bgi(sc, c)Fi(Pr) {1 + Si(Pr, ©) [Hl(c) +

10 E;(Pr, ¢)
g(Sc, C) FJ_(Pr) ?

+ A,(Sc) As(e) - (8-2)

where
F,(Pr) = 0.835 + 0.18 Pr,
gl(Sc, c) =0.2394 + (¢ - 1) [(-0.00312 c + 0.18213 +.5¢(0.00059 ¢ -

- 0.03298) + Sc2(-0.00005 c + 0.00364)].



20

(Pr - 1 -1 .
Si(Pr, ¢) = - [Pr - 17 fz ~ 1? and 0 if Pr = 1 or ¢ = 1

0.115
Hi(e) = e - 1 (6_63_+_]

Lo
1
A,(Sc) = sc

Ap(c) = 0.21066 - 0.05479 ¢ + 0.01058 c2, and

E,(Pr, ¢) = 0-6407 (-0.33 +2.19 ¢ + 0.63 Pr + 0.25/Pr] 10-3,

For m = 0.5,

0.3777

Nu/NRe = 0.4775Pr - Bgs(Sc, ¢) Fo(Pr) 4& + Ho(e) + G(c) Eg(Pr{}
L

(B-3)

where

Fo(Pr) = 0.76 + 0,265 Pr,

g=(Sc, ¢) = 0.3036 + (c - 1) (0.25633 - 0.05076 Sc + 0,00583 SCE}
Ho(e) = (1 - ¢) [0.27902 - 0.44556 c + 0.18848 cZ - 0.02194 CB],
G(c) = (¢ - 1)/|c - ll and 0 if ¢ = 1, and

E>(Pr) = 0.40581 - 0.29358/Pr - 0.05363 Pr + 0.02649/Pr2,

For m = 1,0,

0.3858

Nu/N'Re = 0,57047Pr - Bgs(Sc, c) Fz(Pr) <1 + S;(Pr, c) {H3(c) +

+ Ez(Pr)}} 5 (B~-4)
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where

F=(Pr) = 0,762 + 0.275 Pr,

g=(Sc, ¢) = 0.3577 + (c - 1) {0.30035 - 0.05438 Sc + 0.00589 SCZJ,
Hxz(c) = (1 - ¢) [0.26302 - 0.30873 c + 0.12054 c® - 0,01369 cs], and

Es(Pr) = 0.45561 - 0.32596/Pr - 0.06026 Pr + 0,02916 Pr2,

Comparison of the computer solutions of equations (12) and (14) through
(18) to the correlation formulas (B-2) through (B-4) shows a maximum
error of 0,032 of Nu/NRe in the bounds defined by the relations (B-1).
Nu/ARe varies in the bounds 0,158 = NuANRe = 1,025 in this region,

The average error of Nu/NRe in this region is approximately equal to
0.01,

NOTE: The correlation formulas presented in Appendix B have been
derived by Mr. F. E. McKinney of the George C. Marshall Space
Flight Center.
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FIG. 4.

SPECIFIC HEAT OF PURE GASES
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